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Abstract—Despite a large body of research on robot learning,
it has not yet been thoroughly studied how collaborating humans
and robots learn reciprocally. In such situations, both humans
and robots continuously learn about each other and the task
through interaction. This paper addresses the research question:
“How can human-robot co-learning be facilitated in physically em-
bodied collaborative tasks?”. First, we derived five requirements
for successful human-robot co-learning from literature: shared
goal, synchrony, interdependence, adaptability, and transparency.
Based on these requirements, we designed a collaborative human-
robot handover task and a robot Q-learning method. In an
evaluation with six human participants co-learning was indeed
found to emerge in the hand-over task. Particularly, for three of
the human-robot dyads, our designed setup proved to facilitate
co-learning in a way that met all five requirements. The task and
robot learning method presented in this paper demonstrate how
human-robot co-learning can be enabled in physically embodied
tasks.

Index Terms—Human-Robot Collaboration, Physical Human-
Robot Interaction, Reinforcement Learning

I. INTRODUCTION

HUMAN-ROBOT collaboration research has rapidly
evolved in the last decade [1]. Collaborative robots are

being used in various industries and domains, performing
an increasing amount of tasks side by side with humans.
To ensure that humans and robots collaborate effectively, it
is essential that they learn about each other and the task,
to improve their collaboration over time [2]. Especially in
dynamic, real-world environments, this learning will partly
need to take place on the job, while humans and robots are
collaborating.

We call this continuous collaborative learning process Co-
Learning. When a human and robot are Co-Learning, both
agents simultaneously learn how to collaborate effectively
as a team by adapting their behavior to the other [3]–[5].
As a result of this reciprocal adaptation, new patterns of
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collaboration emerge. Human-robot Co-Learning can be used
to improve performance and personalize robot behavior to their
human collaborator [6]. Recent research has explored the use
of Co-Learning to improve Collaboration Fluency and task
performance [2]–[4], [7].

Co-Learning is a relatively new and unstudied topic within
human-robot collaboration. The dynamics of Co-Learning
have previously been explored in virtual environments [4] and
with Wizard-of-Oz setups [3]. These initial studies have shown
that humans and robots collaborating can develop successful
patterns of collaboration as a result of reciprocal adapta-
tions. There is however limited research on Co-Learning in
physically embodied environments with robots whose actions
are governed by Machine Learning algorithms. There are
some relevant studies on human-robot mutual adaptation and
collaborative learning (e.g. [8]–[11]), within which there is
often a strong focus on task performance improvement. There
are only a few exploratory studies on the process of Co-
Learning and the patterns of collaboration that emerge as a
result [6], [12]. As the existing studies pay little attention to
how Co-Learning can be facilitated, our research was guided
by the following research question: “How can human-robot
co-learning be facilitated in physically embodied collaborative
tasks?”

We studied this question for a team consisting of a human-
robot dyad, and focused on Reinforcement Learning (RL) as
the learning method for the robot. This paper provides a set of
core requirements for human-robot co-learning, and presents
the design and evaluation of a human and a robot collaborating
on a handover task based on these requirements. We use a
qualitative approach to get an in-depth understanding of the
co-learning process in relation to our requirements and design,
as well as to provide a basis for future research on co-learning.

II. DESIGN REQUIREMENTS

We have defined five design requirements for human-robot
Co-Learning in physically embodied tasks based on literature
research [13]: shared goal, synchrony, interdependence, adapt-
ability, and transparency. We examine each of them in the
following subsections.

A. Shared Goal

Ensuring that both team members have the same goal is
crucial for them to converge to congruent strategies [3], [7],
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Fig. 1: Experiment setup for the human-robot co-learning of an object
handover task. The robot consists of the KUKA LBR iiwa7 800 robotic arm
with the qb-softhand attached. The Optitrack motion tracking system is used
to track the pose of the human hand via a sensorized glove. The human is
also performing a secondary task, as explained in Section III-A2

[14]. This can be done by rewarding both team members
based on the joint task goal (e.g., [15]). This leads to the
first requirement:
R1 Both the human and the robot are rewarded similarly,

based on their collaborative performance.

B. Synchrony

Co-Learning is most likely to succeed when both agents
learn synchronously to enable continuity, reciprocity and
complementarity in their learning process (cf., [16], [17]).
If team members’ learning is ”disconnected”, the motivation
for collaboration can be lost due to uncertainty about the
other’s progress and contribution. One of the collaborators
being ahead in learning could also cause a hierarchy in the
team that could be harmful for interdependence [14]. Our
second design requirement therefore states:
R2 The robot has the ability to learn in synchrony with the

human team member.

C. Interdependence

To enable Co-Learning, all team members should be able
to meaningfully contribute to the task by complementing and
supporting each other. Such a team relationship is described
by interdependence, which is a requirement for collaboration
[7], [14], [18] and therefore for Co-Learning [2]–[4], [19].
Interdependence is often used to describe team and task
designs in studies on team collaboration [14], collaborative
performance [14], [19], team task design [4], [7] and team
learning [2], [3].

Interdependence is built up of two types of dependence: (1)
hard dependence, in which team members can only complete
a task together, and (2) soft dependence, when team members
do not strictly need each other to achieve the group goal, but
have opportunities to collaborate to perform better as a team.
This can lead to team members proactively adapting to and

supporting each other, which is a vital part of the Co-Learning
process. Soft dependencies have a recursive nature; when
interdependence is established, soft dependencies can arise,
retaining and strengthening the interdependent relationship. To
enable Co-Learning, we therefore need to facilitate the forma-
tion of an interdependent relationship between the human and
the robot. This is done by ensuring hard dependencies between
the human and the robot and by creating opportunities for soft
dependencies to emerge. The third requirement is as follows:
R3 The task design ensures hard dependencies and allows

for soft dependencies between the human and the robot,
in both directions.

D. Adaptability

In Co-Learning the robot algorithm must remain adaptable
to change, because the human team member is learning at the
same time and might therefore change its behavior later on [2].
This can cause certain state-action pairs, that were previously
discarded by the robot algorithm, to now be preferred due to
changes in the policy of the human. We therefore defined a
requirement that ensures that the robot always keeps exploring:
R4 The RL algorithm can continuously adapt its behavior

during all stages of the learning process.

E. Transparency

Mutual transparency is crucial for the understanding of each
others’ contribution to the joint task performance [20]–[22].
Team members’ behaviors and decisions must be observable,
predictable and directable in a collaboration [2], [7]. Both team
members should be able to observe the state and actions of the
other team member, to allow them to adapt to each other to
develop patterns of collaboration. Mutual transparency helps
to avoid hierarchical inequalities within the team and ensures
that both team members are able to properly adapt. This leads
to the fifth requirement:
R5 The human and the robot are able to observe and under-

stand each other’s state and actions.

III. METHODS

A. Task Design

We designed a human-robot handover task, a common
task found in physical human-robot collaboration [23]. To
coordinate the specific moment in which the responsibility
of not dropping the handover object switches from one team
member to the other, the team members must collaborate to
successfully complete the task. This ensures that a symmetrical
hard dependency is embedded in the task. Moreover, passing
an object involves multiple elements in which soft depen-
dencies can arise. For instance, the position and orientation
at which the object is handed over needs to be predicted
or learned, thereby allowing for proactively reciprocating the
strategy of the other team member. It also allows for different
strategies (e.g. the robot drops the object while the human
holds its hand up, or the robot conveys the object close to the
human until the human seizes it). Therefore, there is space for
a human-robot team to explore and learn what works well for
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their team. The presence of both hard and soft dependencies
follows R3.

Additionally, the task of handing over an object is relatively
short and can either succeed or fail. It is ideal for rewarding
the team based on their collaborative performance (R1), and,
as it is a short task, the team can rehearse the task often in
a short amount of time. Therefore, the robot is rewarded on
a regular basis, allowing it to continuously update its policy.
This contributes to requirement R2, as it allows the robot to
learn at a human timescale.

To accommodate R3 more strongly, the task was designed
such that responsibilities are divided over both agents, creating
dependencies between the human and the robot. We describe
the capabilities of the robot, defined by the State-Action space
of the RL algorithm, in Section III-A1. We explain how we
established a fixed set of capabilities for the human by creating
a secondary task that limits the human ability to act and
observe the environment in Section III-A2. Figure 1 shows
an overview of the whole setup.

1) State-Action space (Robot capabilities): To meet R2,
the state-action space used by the RL algorithm should be
designed such that it enables a sufficient learning pace. RL
algorithms usually require a great amount of training iterations,
which is not possible if they need to learn alongside their
human team partner. We have reduced the number of training
iterations necessary by modeling the task through a state-
action space that is as small as possible. This makes it possible
to quickly explore all possible state-action pairs, also enabling
relearning and therefore R4.

The actions modeled are a set of seven predetermined
movements, and the states are determined by a set of four
binary state factors, visualized in Figure 2. The state factors
mostly contain information about the human team member.
Therefore, they provide the robot with some transparency of
the human (R5). Moreover, the handover task is broken up into
three phases. In each phase, only one or two of the state factors
are taken into consideration, thereby effectively breaking the
task up into three separate learning problems to further reduce
the complexity. In each phase, the robot has different actions
that it can choose from, as shown in Figure 2.

Phase 1 describes the start of the handover, during which
the robot needs to learn when to start handing over the
object. The robot can observe whether the hand of the human
team member is in the robot’s workspace. The robot has two
available actions: waiting until the state changes, or moving
the object towards the human with the action Go to human.

When the robot takes the action (Go to human), it moves to
Phase 2, during which the robot is moving towards the human.
While moving, it can decide on the orientation it will use to
hand over the object. The state factor that can be observed
is the orientation of the human hand. The robot can choose
between two predetermined orientations: the palm of the robot
hand facing up (Serve), so that the human can take it out, or the
palm facing down (Drop), to drop the object into the human
hand.

After either action in Phase 2, the robot will move to Phase
3, in which the focus is on the handover. The robot needs to
learn when and how far to open its hand, while the human

Fig. 2: A flow diagram that shows the capabilities of the robot throughout
three phases of the task. The figure shows the binary state factors (rectangles)
and the possible actions (ellipsoids). Actions are red if they do not affect the
environment, and blue if they result in the robot advancing to the next phase.
The yellow action influences the yellow state, as shown with the yellow arrow.

needs to grasp or catch the object to prevent it from falling.
The human can influence the robot’s behavior by pulling on
the object and displacing the end-effector. An additional state
factor describes whether the robot hand is still fully closed
or partially opened. This combination of capabilities presents
opportunities for multiple strategies and soft dependencies to
emerge. For example, the robot can learn to wait until the end-
effector is displaced before opening its hand to ensure that the
human is already holding the object when the robot lets go, or
to open its hand enough to allow the human to take the object
out without dropping it.

2) Secondary task (Human capabilities): A secondary task
was introduced for the human in the form of a game-like
task, that could only be completed if the human successfully
received the handover object. The introduction of a secondary
task gives the human incentive to complete the task by
rewarding the human for the collaborative performance, to
ensure a shared goal (R1). It also creates a motive for the
human to get the object handed over from the robot, thereby
creating a hard dependency (R3). Moreover, the secondary
task could compensate for the superior ability of the human
to observe task, to prevent a transparency inequality (R5) and
give control over the capabilities of the human.

The secondary task we designed required the human to track
an asteroid on a screen. For that, they needed to continuously
have one hand on a mouse and constantly have their eyes
on the screen. They were instructed to deflect the asteroid to
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complete the game, and that for this to be possible, they needed
a physical object that served as a projectile. They could not
get up and get the object themselves, as they needed to keep
tracking the asteroid on the screen. The task consisted of two
stages. During the first stage, the human needed to keep their
second hand on a button, until a loading bar was filled. As
soon as the bar was full, they could let go of the button, while
a timer started to count down, starting the second stage. In this
stage, the human had twenty seconds to receive the object from
the robot with their free hand, while still tracking the target on
the screen with the other. When the team succeeded, the human
was rewarded with the same score as the robot. If the task
failed, both were rewarded negatively. Auditory feedback was
provided in addition to reward screens, to engage the human.

B. Robot Reinforcement Learning Algorithm

After comparison of multiple RL algorithms [24]–[26] and
their suitability for embodied human-robot co-learning appli-
cations, we chose to extend and adapt a Q-learning algorithm
[27]. Q-learning is a simple and robust RL technique, that
is often used in the domain of social robotics [28]–[30]
and specifically co-learning [3]. We adapted the Q-learning
algorithm using decomposition techniques based on MAXQ
value decomposition [31] and extended it with eligibility traces
[32] to specifically meet our design requirements.

1) Decomposition: Hierarchical RL with MAXQ Value
Function Decomposition [33] decomposes the learning prob-
lem into multiple smaller problems with a hierarchical struc-
ture, resulting in faster learning [34]. Splitting the problem
into smaller problems can also increase adaptability [31], as
the policy of one phase of the learning problem can change
without affecting the policies of other phases.

The idea of decomposing the problem is based on the
concept that not every state variable is important in every phase
of the task. The three phases in our task (see Figure 2) are
however sequential instead of hierarchical, meaning that they
can not be decomposed using Dietterich’s hierarchical value
decomposition [33]. Therefore, we instead decomposed the
learning problem into three sequential Q-learning problems,
each with their own Q-table, creating the same effect of de-
creasing the amount of Q-values without affecting the amount
of actions and state variables. The Q-values are thus a function
of state (s), action (a) as well as phase (ϕ):

Q∗(ϕ, s, a) = E[R(ϕ′, s′) + γmax
a′

Q∗(ϕ
′, s′, a′)]. (1)

By decomposing the task, we provided the robot with
information about the importance of state variables in different
phases of the task. This significantly reduces the number of
states and thereby decreases the scale of the learning problem,
increasing the overall learning pace and adaptability of the RL
agent, ensuring R2 and R4.

2) Reward function: Design requirement R1 states that
both agents get rewarded based on performance, and that
both agents get rewarded similarly. Both agents therefore
received either positive or negative feedback at the end of each
episode. This reward was based on whether the handover was
completed successfully without dropping the object, as well as

the time left to do so. The robot received a positive reward of
(+10) if the task was completed successfully, and a negative of
(−10) if the task failed. Additionally, if the task succeeded,
the amount of seconds left to complete the task was added
to the positive reward. As the team was given 20 seconds at
the start of the task, the positive reward was always between
+10 and +30. The reward function was extended with a small
punishment (−1) for each action necessary to prevent a policy
where the robot gets stuck in a loop. To accommodate R1, the
human would see this same reward as a score given for the
completion of the task.

3) Eligibility traces: Rewarding the Q-learning algorithm
at the end of each episode creates two problems. First of
all, most actions get a delayed reward [35], making the
learning pace slow. Second, due to the decomposition that we
implemented, the Markov property is not satisfied across the
whole task (as the task is decomposed into separate learning
problems). Therefore, regular backpropagation does not work
as effectively as it would otherwise. We solved these problems
with eligibility traces [32].

An eligibility trace is a trace of all previously visited Q-
values. These traces are stored in a table for each state-
action pair in each phase S(ϕ, s, a). Using eligibility traces,
the algorithm tracks all state-action pairs reached during the
episode. When a reward is received at the end of an episode, it
updates all corresponding Q-values based on this reward. This
not only speeds up the learning process, but it also ensures
that mistakes made in early phases of the task get rewarded
negatively in case of an unsuccessful episode [36].

With eligibility-traces, all Q-values are updated after every
action. To do so, we first calculate what would have been the
updated Q-value for the last phase-state-action combination
Q̂(ϕ, s, a) shown in (2a) using the decomposed Bellmann
equation (1). Then we use Q̂ to calculated the update-value
∆Q (2b):

Q̂(ϕ, s, a) = R(ϕ′, s′) + γmax
a′

Q(ϕ, s′, a′), (2a)

∆Q = Q(ϕ, s, a)− Q̂(ϕ, s, a). (2b)

This update-value (∆Q) is then used to update all Q-values
based on their eligibility. As shown in (3):

Q(ϕ, s, a) = Q(ϕ, s, a) + α∆QS(ϕ, s, a) ∀ S(ϕ, s, a).
(3)

The learning rate α is a value between 1 and 0. It is used to
determine to what extent new experiences override what has
been learned already.

4) Epsilon decay: The algorithm uses epsilon decay to
balance exploration and exploitation. Usually, methods for bal-
ancing exploration and exploitation are designed to converge
to a greedy policy. This is not beneficial for adaptability in the
later stages of the learning process. In our algorithm, ϵ never
completely decays to zero. This enhances R4 as the system
must never stop exploring to stay adaptable during all stages
of the learning process.
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The reward (R) and the epsilon decay rate (γϵ) are used to
update ϵ as follows:

ϵ =

{
max(γϵϵ, 0.2) if R < 0 ∨ ϵ > 0.5

min( 1
γϵ
ϵ, 0.5) if R > 0

. (4)

Epsilon starts at a value of 1 to guarantee exploration when
no policy is learned yet. Epsilon then decays until it reaches a
50% change of exploration (γϵ = 0.9). During the rest of the
episodes, ϵ decays further when the team has a high success
rate, so the robot has a higher chance to exploit its current
policy. When the team experiences more failure, the chance
of exploring grows.

C. Evaluation

To test whether the designed task and robot algorithm
would allow for co-learning, we evaluated the setup with
human participants using a qualitative, case-by-case analysis.
Co-learning is an open-ended process in which good task
performance can manifest in many different ways, due to the
multiple possible strategies that can be taken by the team. A
qualitative approach can provide 1) an understanding of how
individual co-learning behaviors evolve over time, and 2) in-
sight into how our proposed new co-learning task provides an
environment to hypothesize and quantify co-learning processes
in the future. We aim to contribute to existing work on Co-
Learning that also takes a qualitative approach [6], [12]. Six
human participants (students from Master programs at Delft
University of Technology) each performed the task for four
sessions of ten minutes (40 minutes of co-learning per dyad
in total). This resulted in approximately 20 to 30 handover
attempts per session. Participants received written information
about the procedure beforehand, and were further instructed
verbally. We used six measurements for our evaluation: perfor-
mance, subjective Collaboration Fluency, behavioral strategies,
relative liability, action preference from Q-values, and answers
to interview questions. The procedure was approved by the
Human Research Ethics Committee at Delft University of
Technology.

1) Performance: To track performance over time, we stored
whether each attempt of the task was successful or not, and
calculated the percentage of successful attempts per every ten-
minute session.

2) Subjective Collaboration Fluency: To measure how the
human participants experienced the collaboration, they were
asked to complete a survey on human-robot Collaboration
Fluency [37] after each ten-minute session.

3) Behavioral strategies: As described earlier in the paper,
there are several possible strategies that all lead to a successful
handover. Considering the task design, we identified three
possible strategies:
S1 The robot lets the object go, trusting the human will catch

it.
S2 The human pulls on the object, letting the robot know it

can let go.
S3 The robot opens its hand partially, letting the human take

the object.

We recorded videos of the participants, such that we could
qualitatively assess which strategies were followed in success-
ful attempts.

4) Relative liability: Relative liability describes the propor-
tion in which team members caused episodes to fail in each
10-minute session. It portrays the relative learning pace of
both agents, since when the learning pace is similar, it should
stay the same for both agents over time. If one team member
learns faster than the other, there is a shift in relative liability
because the proportion of mistakes made by the superior agent
goes down. We determined relative liability by checking which
agent made the mistake that caused the episode to fail in the
case of a failed episode.

We considered the robot to be responsible for failure when
the object was not passed within the allocated time when the
human did try to signal the robot, or when the robot dropped
the object without the human touching it. For any other reason
of failure, we considered the human liable.

5) Action preference from Q-values: Action preference
describes the specific policy of the robot in different phases of
the task. We have evaluated the Q-tables after each episode,
to track which action the robot preferred in each state and
whether and how this changed as the experiment progressed.
This gave us insight into the behavior learned by the robot, as
well as how adaptable this behavior is (how much it changes
over time).

6) Interview: We conducted a short interview with each of
the participants after the last learning, in which we asked the
following three questions:
Q1 Please indicate what your objective was during the learn-

ing process.
Q2 Describe the different strategies that you used, and how

did this change over time.
Q3 Did you rely on a specific strategy of the robot?

The first question was asked to investigate whether the
goal of the human corresponded to the goal of the robot,
to test whether the team had a shared goal R1. The second
question was used to find if the human explored different
strategies during the learning process, and more specifically
whether it converged towards preferring one strategy over
other strategies. With the last question, we intended to find
whether the human experienced soft dependencies.

IV. RESULTS

We present the results of the evaluation by analyzing
whether we succeeded in facilitating the design requirements
for each human-robot dyad (summarized in Table I).

A. Shared Goal (R1)

Participants B, C, E, and F indicated in the interview that
their goal was to complete each episode without dropping the
object. Participants B and F even indicated that they had a
secondary goal of improving the time in which they succeeded,
to optimize their score. Therefore, it is shown in Table I that
requirement R1 is met in these teams.

Participants A and D indicated that their main goal was
not to succeed at the task, but to train the robot to follow
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TABLE I: Overview of each requirement and whether it was met during the
experiment in each team. Additionally, the bottom row shows whether the
results indicate that co-learning took place during the experiment. The content
of the bottom row is discussed in Section V.

Teams A B C D E F

R1 - Shared Goal X D D - D D
R2 - Synchrony D D - X D D
R3 - Interdependence D D D D - D
R4 - Adaptability D D - D - D
R5 - Transparency D D X - D D
Co-learning D D - - - D

their preferred strategy. Participant A said that this was their
main objective during the whole experiment. For instance,
they never let the task succeed if the robot did not let go
of the object. This is why strategy S3 is never seen in team
A in Figure 3. Additionally, it can be seen that the human’s
perception of Fluency is relatively high, while the team’s
performance is low. This can be explained by the fact that the
human met their objective of influencing the robot’s behavior,
at the expense of the robot’s goal of succeeding at the task.
This resulted in both agents perceiving different rewards.

Participant D indicated that they changed their objective
between session three and four. First, it matched the robot’s
objective, while during the last session their goal was only
to train the robot to their preferred strategy. Participant D
explained that their goal changed due to the realization that
the robot used trial-and-error learning. They realized that they
could influence the robot’s behavior by rewarding desired
behavior and punishing undesired behavior. Participant D
therefore suddenly changed their behavior, resulting in the
performance drop in the 4th session (Figure 3) and the human
deliberately failing the task to train the robot (Figure 4). This
behavior resulted in the team having a shared goal for only a
part of the task, leaving R1 inconclusive in team D.

B. Synchrony (R2)

Figure 4 shows that relative liability is relatively constant
for teams A and F, which means that the learning of the human
and the robot was synchronous. For teams B and E, there is
an initial large shift towards the human being responsible for
a large part of the failures, but this recovers to the middle
over subsequent sessions. While the robot learned faster in
the beginning, the human was able to catch up, leading to
synchronous learning overall.

In team D we can observe a shift in relative liability in the
first 3 sessions, as the robot could not keep up with the learning
of the human. Therefore, this synchrony requirement was not
met. Moreover, the human still learned faster than the robot
during the fourth session, even though Figure 4 seems to imply
that the robot made a recovery. The reason this proportion
drops back towards 50%, however, is that the human started
to deliberately fail the task to actively train the robot to prefer
strategy S2, as mentioned by the participant in the interview.
This can also be seen by the sudden decrease in performance
rate during this session in Figure 3.

In team C, a shift in relative liability can be seen in Figure
4. In this case, the robot improved its policy faster than the

Fig. 3: The distribution of the three different strategies in phase 3 that
could lead to a successful handover, combined with the performance and
Collaboration Fluency score. The figure shows how the preference for different
strategies changes over time. The three strategies are as follows:
S1: The robot lets go of the object, trusting the human will catch it.
S2: The human pulls on the object, letting the robot know it can let go.
S3: The robot opens its hand partially, letting the human take the object.

Fig. 4: The percentage of how many times each agent was responsible for
failing an episode during each 10-minute session is shown for each team
(relative liability). The rate of failure of the robot can be read on the left axis,
while the human failure rate is displayed on the right axis.

human. Combined with the fact that the team barely improved
their performance during the four sessions (see Figure 3),
we can deduce that the human did not improve its policy
at all. Therefore, no conclusion could be drawn about this
requirement for this team.

C. Interdependence (R3)

Different individuals prefer different strategies. Figure 3
shows that the method enables different teams to learn dif-
ferent strategies. Team A, for instance, converges completely
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to strategy S1, while teams B and D learned that this strategy
did not work for them.

Post-experiment interviews revealed some important under-
lying insights about the development of the strategies during
co-learning. Participants A and C stated that they did not want
to take the object from the robot without its permission, in an
attempt to maintain the trust of the robot. This complies with
the action preferences from the Q-values, visualized in Figure
3 that shows that strategy S3 was not preferred in these teams.
By actively not choosing this strategy, the human depends
on the robot to open its hand completely for the task to be
completed. This shows the establishment of a soft dependency
between the human and the robot, which is beneficial for the
team’s relationship.

All three observed strategies contain their own similar soft
dependencies. This means that soft dependencies arise during
the learning process, when a team converges to preferring
one specific strategy. It can be seen in Figure 3 that in all
teams multiple strategies were explored. In teams A, B, D, and
F, there was convergence to one specific strategy during the
experiment. Thus, soft dependencies emerged in these teams.
Team E is the only team that kept executing all strategies until
the end of the experiment. This means that both team members
never fully committed to being dependent on the other, making
it the only team for which it is inconclusive whether design
requirement R3 is met.

D. Adaptability (R4)

Figure 3 clearly shows that teams A, B, D, and F made a
relatively drastic change in preferred strategy towards the end
of the experiment. This shows that the RL algorithm was able
to adapt its policy to accommodate strategy changes.

In teams C and E, no large change in the policy of the
robot occurred during the experiment. However, this does not
necessarily mean that the robot had no adaptability, as the
result could have also been caused by behavior of the human.
Therefore, these cells are inconclusive in Table I.

E. Transparency (R5)

The method allowed both agents to observe each other by
design, as explained earlier in the paper. We attempted to avoid
an imbalance in learning pace by ensuring that both human
and robot had access to a similar level of limited information
about the other.

Figure 4 shows that there was indeed no imbalance in
learning pace in teams A, B, E, and F, as explained in Section
IV-B. The unequal learning pace in team C, however, was
caused by the fact that the human was not able to understand
the policy of the robot. This was a result of the human being
too occupied by the secondary task, resulting in unbalanced
transparency. There is no indication that the unequal learning
pace in team D was caused by the same issue.

While the secondary task prevented the human from con-
stantly looking at the robot, as explained in Section III-A2,
Figure 3 shows that in teams B, D, and F, the human preferred
to rely on tactile sensing to know where to grasp the object,
as they do not follow strategy S1. They were therefore able

to compensate for their lack of visual observation. Further
investigation of the video recordings of the experiment showed
that participants A and E also relied on tactile sensing to locate
the object, they just did it in a subtle manner, so as to not
displace the robot.

In short, in teams A, B, E, and F we can state that both
agents had transparency and that no unwanted imbalance
appeared. This means the requirement is met. In team C, the
secondary task over-hindered the human’s ability to visually
observe the robot, causing this requirement not to be met,
while in team D the results are inconclusive.

V. DISCUSSION

A. Facilitating Co-learning
In summary, in three out of six teams we managed to

create the circumstances for Co-Learning. Table I shows that
all the requirements are met in team B and team F, mean-
ing that these teams demonstrated successful Co-Learning.
Nevertheless, partially fulfilling the requirements can still
mean that there was some degree of Co-Learning, as shown
by the development of interesting and useful human-robot
collaboration patterns. For example, even though the human
and the robot did not have the same goal (R1) in team A, they
still managed to improve their collaboration by co-learning a
joint strategy. The reason R1 was not met in team A, is that the
participant chose to train the robot, while the goal of the robot
was to succeed at the task. In practice, however, there are still
multiple congruent strategies that reach both goals. Moreover,
Figure 3 shows an increase in performance over time for team
A, as well as a growth in the participant’s perception of fluency
in the team. The better team performance may be the result
of effective collaboration patterns, and the improved fluency
suggests that soft dependencies emerged in team A.

In team C, we observed that the participant struggled to
understand how to do the task and seemed unable to learn
this within the given time. Still, the team developed some
collaboration patterns and soft dependencies. However, by not
meeting R2, R4 and R5 we cannot claim that this team was
able to achieve a full Co-Learning process.

In team D, the human learned faster than the robot, which
led to an imbalance in contribution over time (Figure 4).
This imbalance may have caused the human to change their
motivation over time. Even though there were indications for
co-learning during the first sessions of the experiment, it was
not sustained during the last session. Therefore, in team D,
multiple design requirements were left inconclusive or were
not met.

In Team E, we did not see soft dependencies arise during the
experiment. Additionally, Figure 3 does not show an increase
in performance or fluency. However, changes in preferred
collaboration patterns over time can still be observed in Figure
3. They are not substantial enough to prove that R3 or R4 were
met, but it does suggest that a longer collaboration could have
resulted in the requirements being met. Furthermore, Figure
4 shows a balanced learning pace between the two agents.
Overall, it seems that the team was still exploring after the
four sessions, and full Co-Learning might have emerged in a
longer collaboration.
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B. Limitations and Future work

While the results showed that the developed task-,
algorithm- and interaction design enabled co-learning, the
short-term performance was not increased for most teams
(Figure 3). This can be explained by the fact that the designed
method and evaluation focused on the Co-Learning process.
The essence of designing for Co-Learning is to design the
conditions in which collaborators can learn the behavior
needed to develop smooth and effective collaboration, which
can facilitate long-term performance improvement. This means
that Co-Learning can be present without an immediate perfor-
mance increase. We expect that when a similar experiment is
done for a longer duration of time, with more participants, an
increase in performance should be measurable in teams where
Co-Learning is identified. The work presented in this paper
can serve as a basis for future larger, quantitative studies into
long-term effects of Co-Learning in embodied human-robot
teams.

This study focused on facilitating human-robot Co-Learning
through five requirements. As we were able to identify co-
learning in at least one of the teams (team A) despite one
of the requirements not being met, the individual effect and
weight of each design requirement requires further research.
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